岩崎 学
統計数理研究所特任教授/東京理科大学大学院理学研究科数学専攻修士課程修了/理学博士/茨城大学工学部、防衛大学校数学物理学教室、成蹊大学理工学部、横浜市立大学データサイエンス学部を経て現職/内閣府、厚生労働省、文部科学省、医薬品医療機器総合機構などの専門委員を歴任/統計関連学会連合理事長、日本統計学会会長、応用統計学会会長など統計関連諸学会の役員を多く務める
本講座は、日本統計学会と日本行動計量学会の協力のもとに作成され、統計学Ⅰで学んだデータ分析の基礎および統計学Ⅱで学んだ推測統計の方法に引き続き、多変量データ解析手法について学習します。実際のデータは複数個の測定項目からなる多変量データであることが多く、そのようなデータの統計解析手法の学習は、統計手法の現実問題への応用で極めて重要なものです。本講座では、多変量解析法を実際のデータに適用する際の注意点や実際の応用例を中心に学習をします。
統計数理研究所特任教授/東京理科大学大学院理学研究科数学専攻修士課程修了/理学博士/茨城大学工学部、防衛大学校数学物理学教室、成蹊大学理工学部、横浜市立大学データサイエンス学部を経て現職/内閣府、厚生労働省、文部科学省、医薬品医療機器総合機構などの専門委員を歴任/統計関連学会連合理事長、日本統計学会会長、応用統計学会会長など統計関連諸学会の役員を多く務める
大阪大学大学院人間科学研究科 教授/京都大学文学部哲学科(心理学専攻)卒業/京都大学・博士(文学)/甲子園大学人間文化学部助教授、立命館大学文学部教授などを経て現職/日本行動計量学会欧文誌・編集委員長、日本計算機統計学会欧文誌・編集理事などを歴任/日本計算機統計学会会長
立正大学データサイエンス学部 教授/九州大学理学部数学科卒業/九州大学大学院理工学研究科修士課程修了 理学博士/慶應義塾大学大学院健康マネジメント研究科 教授を経て現職/日本学術会議連携会員/日本統計学会代議員、放送大学TV「身近な統計」主任講師等を歴任
同志社大学文化情報学部 教授/九州大学大学院総合理工学研究科修士課程修了/北海道大学大学院工学研究科 博士(工学)/鹿児島大学理学部 助手・助教授を経て現職/日本統計学会理事、日本計算機統計学会理事・評議員、コンピュータ利用教育学会理事・副会長、大学入試センター教科科目第一委員会委員、公認会計士試験委員を歴任/関連性データの分析法(共立出版)の著者
大阪経済大学経営学部 准教授/早稲田大学人間科学部 非常勤講師/電気通信大学大学院情報システム学研究科知能情報社会知能情報学専攻博士後期課程満期退学/電気通信大学・博士(学術)/女子栄養大学助教、一橋大学大学院国際企業戦略研究科特任講師、徳山大学准教授を経て現職。明治乳業(株)中央研究所での勤務経験がある他、(株)ヤフーバリューインサイト(現(株)マクロミル)顧問、(株)ALBERT顧問などを歴任。ビジネスにおける統計手法応用やコンサルティング経験が豊富
日経リサーチ シニアエグゼクティブフェロー
独立行政法人 統計センター 理事
総務省統計研究研修所 客員教授
統計学Ⅰおよび統計学Ⅱに対応する知識があるのが望ましい(必須ではない)
Week1~Week4 確認テスト(各5問)
最終週(Week5)に最終テスト(20問)
得点率60%以上
5週間
「統計学Ⅲ:多変量データ解析法 オフィシャル スタディノート 」
このスタディノートは、記述統計のみを扱った「統計学Ⅰ:データ分析の基礎」、推測統計を扱った「統計学Ⅱ:推測統計の方法」の続編で、実際のデータ解析の場面で遭遇する多変量データの解析を扱っています。本講座の内容は、主成分分析や因子分析から最近の潜在クラス分析や構造方程式モデリングなど多くの手法を取り扱っています。
講義動画収録時期:2017年
カテゴリーⅢ
※受講登録するとお客様の利用者情報は講座提供者(講師)に共有されます。詳しくは利用規約とプライバシーポリシーをご覧ください。